

Essential equipment for professional electricians: Measure current and voltage with a single instrument!

Specifications Basic accuracy figures for measurementranges arc indicated in parentheses.

	3280-10F	3280-20F
AC measurement method	MEAN value	True RMS
Core jaw diameter	\$33 mm (1.30"), jaw thickness: 9.5 mm (0.37")	
Max. rated voltage to earth	Jaw : CAT IV 300 V, CAT III 600 V Voltage measurement terminal : CAT III 300 V , CAT II 600 V	
AC Current	$42.00 \mathrm{~A} 420.0 \mathrm{~A} 1000 \mathrm{~A}(\pm 1.5 \%$ rdg. $\pm 5 \mathrm{dgt}$.	
Frequency characteristics	50 to 60 Hz	40 Hz to 1 kHz
AC Voltage	4.200 V to $600 \mathrm{~V}, 4$ ranges ($\pm 1.8 \% \mathrm{rdg} . \pm 7 \mathrm{dgt}$) [ncreased accuracy	
Frequency characteristics	45 Hz to 500 Hz	
DC Voltage	420.0 mV to $600 \mathrm{~V}, 5$ ranges ($\pm 1.0 \% \mathrm{rdg} . \pm 3 \mathrm{dgt}$) [ncreased accuracy	
Resistance	420.0Ω to $42.00 \mathrm{M} \Omega, 6$ ranges ($\pm 2.0 \%$ rdg. ± 4 dgt.)	
Continuity Check	$\begin{aligned} & 420.0 \Omega \text { (} \pm 2.0 \% \text { rdg. } \pm 4 \text { dgt.) } \\ & \text { Threshold of buzzer sound } 50 \Omega \pm 40 \Omega \text { or less } \end{aligned}$	
Crest factor	-	2.5 or less (1.5 or less at 4200 counts)
Display refresh rate	400 ms	

Operating temperature and humidity	$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$, Increased periormance 80% RH or less (no condensation)
Storage temperature and humidity	$-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$, Increased periomance 80% RH or less (no condensation)
Drop-proof distance	1 m onto concrete
Dustproof and waterproof	IP40 Increased periomance
Standards	Safety : EN 61010, EMC : EN 61326
Functions	Data hold, Auto power-saving function
Power supply	Coin type lithium battery CR2032×1
Continuous use	120 hours 70 hours
Dimensions and mass	$57 \mathrm{~W} \times 175 \mathrm{H} \times 16 \mathrm{D} \mathrm{mm} \mathrm{(2.24"W} \times 6.89$ " $\mathrm{C} \times 0.63 \mathrm{CD}$), $100 \mathrm{~g}(3.5 \mathrm{oz}$.
[ncreased accuracy	creased periormance Compared to previous models ($3280-10,3280-20$)

AC FLEXIBLE CURRENT SENSOR CT6280 specifications

Core jaw diameter	$\phi 130 \mathrm{~mm}\left(5.12^{\prime \prime}\right)\left(\right.$ (Cable cross-section diameter: $5 \mathrm{~mm}\left(0.20^{\prime \prime}\right)$; tip cap diameter: $\left.7 \mathrm{~mm}\left(0.28^{\prime \prime}\right)\right)$
AC Current	$420.0 \mathrm{~A} / 4200 \mathrm{~A}(\pm 3.0 \%$ rdg. ± 5 dgt.) 40 Hz to 1 kHz
Cable length	$800 \mathrm{~mm}\left(31.5^{\circ}\right)$

Lineup

Model	AC CLAMP METER 3280-10F	AC CLAMP METER 3280-20F	AC CLAMP METER SET 3280-70F	AC CLAMP METER SET 3280-90F
AC measurement method	MEAN value	True RMS	MEAN value	True RMS
Model No. (Order Code)	3280-10F	3280-20F	3280-70F	3280-90F
Includes	3280-10F CARRYING CASE 9398 TEST LEAD L9208 Coin type lithium battery CR2032 Instruction Manual	3280-20F CARRYING CASE 9398 TEST LEAD L9208 Coin type lithium battery CR2032 Instruction Manual	3280-10F AC FLEXIBLE CURRENT SENSOR CT6280 CARRYING CASE C0205 TEST LEAD L9208 Coin type lithium battery CR2032 Instruction Manual	3280-20F AC FLEXIBLE CURRENT SENSOR CT6280 CARRYING CASE C0205 TEST LEAD L9208 Coin type lithium battery CR2032 Instruction Manual
Image				

Options

CARRYING CASE 9398 (bundled with the 3280-10F/ 3280-20F)
NEW AC FLEXIBLE CURRENT SENSOR CT6280 (includes C0205, attachment)
NEW CARRYING CASE C0205 (bundled with the 3280-70F/ 3280-
90F/ CT6280; fits CT6280, 3280-10F/ 3280-20F, and test leads)

TEST LEAD L9208 (bundled Accessory) TEST LEADS HOLDER 9209 CONTACT PIN SET L4933* SMALL ALLIGATOR CLIP SET L4934*

*Probe tips can be used on TEST LEAD L9208.

What is the difference between the
Mean method and True RMS method?

There are two methods for converting current into RMS values: the mean method (mean rectification RMS value indication) and the true RMS method (true RMS value indication). Although both methods yield the same value for undistorted sine waves, distortion of the waveform causes the values to diverge

MEAN method (MEAN value)

The input waveform is treated as an undistorted sine wave (single frequency only) The AC signal mean is calculated, converted to an RMS value, and displayed. The measurement error increases when the waveform is distorted.
True RMS method (True RMS)
The waveform including harmonic components is calculated according to an RMS calculation formula and displayed.
True RMS measurement yields accurate display values even when measuring a distorted waveform, for example from an inverter-equipped device or switching power supply

Current waveform from an inverter (primary side)

MEAN method (3280-10F)

meth (3280-20F)

HIOKI E. E. CORPORATION

HEADQUARTERS

81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 FAX + 81-268-28-0568 http://www.hioki.com / E-mail: os-com@hioki.co.jp

[^0]HIOKI USA CORPORATION
TEL +1-609-409-9109 FAX +1-609-409-9108
http://www.hiokiusa.com / E-mail: hioki@hiokiusa.com

[^0]: HIOKI (Shanghai) SALES \& TRADING CO., LTD.
 TEL + 86-21-63910090 FAX +86-21-63910360 http://www.hioki.cn / E-mail: info@hioki.com.cn

 HIOKI SINGAPORE PTE. LTD.
 TEL +65-6634-7677 FAX +65-6634-7477
 E-mail: info-sg@hioki.com.sg
 HIOKI KOREA CO., LTD.
 TEL +82-2-2183-8847 FAX +82-2-2183-3360
 E-mail: info-kr@hioki.co.jp

